Die Professur für Elektrobiotechnologie am Campus Straubing für Biotechnologie und Nachhaltigkeit an der Technischen Universität München wurde unter der Leitung von Prof. Dr. Nicolas Plumeré im Jahre 2020 neu gegründet. Unsere Forschung erstreckt sich von der Entwicklung schneller und genauer elektrochemischer Sensoren über nachhaltige Elektrosynthese bis zu Photovoltaik und Power-to-Fuel Systemen basierend auf natürlich vorkommenden Proteinen.
Dabei liegt ein spezieller Fokus auf die Haltbarkeit und Langlebigkeit der fragilen biologischen Komponenten, was ein zentrales Hindernis in der großtechnischen Anwendung für diese nachhaltigen und außerordentlich energiesparenden Systeme darstellt. Diese Ziele sind nur durch ein breites Spektrum von Forscherinnen und Forschern verschiedener Fachrichtungen zu erreichen. Durch dieses interdisziplinär aufgestellt Team möchten wir die Entwicklung von den ersten Schritten in den Grundlagen der Proteinkinetik bis zur durch Computersimulation gestützten Verbesserung von Prototypen begleiten.
Projekte
Ausgewählte Publikationen
Bioelectrocatalytic cofactor regeneration coupled to CO2 fixation in a redox-active hydrogel for stereoselective C-C bond formation
L. Castañeda-Losada, D. Adam, N. Paczia, D. Buesen, F. Steffler, V. Sieber, T. Erb, M. Richter, N. Plumeré
Angew. Chem. Int. Ed., 2021, 60, 2-8
Reversible catalysis
V. Fourmond, N. Plumeré, C. Léger.
Nature Reviews Chemistry, 2021, 5, 348-360
Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film
S. Hardt, S. Stapf, D. T. Filmon, J. Birrell, O. Rüdiger, V. Fourmond, C. Léger, N. Plumeré.
Nature Catalysis, 2021, 4, 251–258
Spectroscopic Evidence for a Covalent Sigma Au-C Bond on Au Surfaces Using 13C Isotope Labeling
H. Li, G. Kopiec, F. Müller., F. Nyssen, K. Shimizu, M. Ceccato,K. Daasbjerg, N. Plumeré.
JACS Au, 2021, 1 (3), 362-368
Suppressing hydrogen peroxide generation to achieve O2-insensitivity of a [NiFe] hydrogenase in redox active films
H. Li, U. Münchberg, A. Alsheikh Oughli, D. Buesen, W. Lubitz, E. Freier, N. Plumeré.
Nature Communications, 2020, 11 (1), 1-7
The electron as a probe to measure the thickness distributions of electroactive films
D. Buesen, H. Li, N. Plumeré.
Chemical Science, 2020, 11, 937 – 946 (Outside Front Cover)
Reactivation of sulfide-protected [FeFe] Hydrogenase in a redox-active hydrogel
A. Alsheikh Oughli, S. Hardt, O. Rüdiger, J. A. Birrell and N. Plumeré.
Chemical Communications, 2020, 56 (69), 9958-9961 (Outside Back Cover)
Complete Protection of O2-Sensitive Catalysts in Thin Films
H. Li, D. Buesen, S. Démentin, C. Léger, V. Fourmond and N. Plumeré.
J. Am. Chem. Soc., 2019, 141, 16734-16742 (Research Highlight in Nature Reviews Chemistry)
Preventing the coffee-ring effect and aggregate sedimentation by in situ gelation of monodisperse materials
H. Li, D. Buesen, R Williams, J. Henig, S. Stapf, K. Mukherjee, E. Freier, W. Lubitz, M. Winkler, T. Happe and N. Plumeré.
Chemical Science, 2018, 9, 7596-7605 (Pick of the Week, Hot Article, Outside Front Cover)
A Redox Hydrogel Protects the O2-Sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from Oxidative Damage
A. Alsheikh Oughli, F. Conzuelo, M. Winkler, T. Happe, W. Lubitz, W. Schuhmann, O. Rüdiger, N. Plumeré. Angew. Chem. Int. Ed., 2015, 54, 12329 –12333.
A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage
N. Plumeré, O. Rüdiger, A. Alsheikh Oughli, R. Williams, J. Vivekananthan, S. Pöller, W. Schuhmann, W. Lubitz.
Nature Chemistry, 2014, 6, 822–827.