Alternativer Text

Publications

  1. Amperometric biosensors: Harnessing photosynthetic reaction centers for herbicide detection.
    Modak, N. & Friebe, V. M. Current Opinion in Electrochemistry 42, 101414; https://doi.org/10.1016/j.coelec.2023.101414 (2023).
  2. In situ time-resolved spectroelectrochemistry reveals limitations of biohybrid photoelectrode performance.
    Nawrocki, W. J., Jones, M. R., Frese, R. N., Croce, R. & Friebe, V. M. Joule 7, 529–544; https://doi.org/10.1016/j.joule.2023.02.015 (2023).
  3. Bioelectrocatalytic Cofactor Regeneration Coupled to CO2 Fixation in a Redox-Active Hydrogel for Stereoselective C-C Bond Formation.
    Castañeda-Losada, L., Adam, D., Paczia, N., Buesen, D., Steffler, F., Sieber, V., Erb, T. J., Richter, M. & Plumeré, N. Angewandte Chemie International Edition 60, 21056–21061; https://doi.org/10.1002/anie.202103634 (2021).
  4. Artificial maturation of [FeFe] hydrogenase in a redox polymer film.
    Felbek, C., Hardt, S., Papini, C., Pramanik, D., Artero, V., Fontecave, M., Fourmond, V., Plumeré, N. & Léger, C. Chemical Communications 57, 1750–1753; https://doi.org/10.1039/D0CC08168J (2021).
  5. Reversible catalysis.
    Fourmond, V., Plumeré, N. & Léger, C. Nature Reviews Chemistry 5, 348–360; https://doi.org/10.1038/s41570-021-00268-3 (2021).
  6. Reversible H2 Oxidation and Evolution by Hydrogenase Embedded in a Redox Polymer Film.
    Hardt, S., Stapf, S., Filmon, D. T., Birrell, J. A., Rüdiger, O., Fourmond, V., Léger, C. & Plumeré, N. Nature Catalysis 4, 251–258; https://doi.org/10.1038/s41929-021-00586-1 (2021).
  7. Spectroscopic Evidence for a Covalent Sigma Au-C Bond on Au Surfaces Using 13C Isotope Labeling.
    Li, H., Kopiec, G., Müller, F., Nyßen, F., Shimizu, K., Ceccato, M., Daasbjerg, K. & Plumeré, N. Journal of the American Chemical Society Au 1, 362–368; https://doi.org/10.1021/jacsau.0c00108 (2021).
  8. Making electrocatalytic materials from molecular catalysts.
    Li, H. & Plumeré, N. Chem 7, 549–552; https://doi.org/10.1016/j.chempr.2021.02.010 (2021).
  9. The electron as a probe to measure the thickness distributions of electroactive films.
    Buesen, D., Li, H. & Plumeré, N. Chemical Science 11, 937–946; https://doi.org/10.1039/C9SC03653A (2020).
  10. Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films.
    Li, H., Münchberg, U., Oughli, A. A., Buesen, D., Lubitz, W., Freier, E. & Plumeré, N. Nature Communications 11, 920; https://doi.org/10.1038/s41467-020-14673-7 (2020).
  11. Reactivation of sulfide-protected [FeFe] hydrogenase in a redox-active hydrogel.
    Oughli, A. A., Hardt, S., Rüdiger, O., Birrell, J. A. & Plumeré, N. Chemical Communications 56, 9958–9961; https://doi.org/10.1039/D0CC03155K (2020).
  12. A kinetic model for redox-active film based biophotoelectrodes.
    Buesen, D., Hoefer, T., Zhang, H. & Plumeré, N. Faraday Discussions 215, 39–53; https://doi.org/10.1039/c8fd00168e (2019).
  13. Complete Protection of O2-Sensitive Catalysts in Thin Films.
    Li, H., Buesen, D., Dementin, S., Léger, C., Fourmond, V. & Plumeré, N. Journal of the American Chemical Society 141, 16734–16742; https://doi.org/10.1021/jacs.9b06790 (2019).
  14. Bioinspired Strategy for Controlled Polymerization and Photopatterning of Plant Polyphenols.
    Behboodi-Sadabad, F., Zhang, H., Trouillet, V., Welle, A., Plumeré, N. & Levkin, P. A. Chemistry of Materials 30, 1937–1946; https://doi.org/10.1021/acs.chemmater.7b04914 (2018).
  15. Bioelectrocatalytic and electrochemical cascade for phosphate sensing with up to 6 electrons per analyte molecule.
    Kopiec, G., Starzec, K., Kochana, J., Kinnunen-Skidmore, T. P., Schuhmann, W., Campbell, W. H., Ruff, A. & Plumeré, N. Biosensors & Bioelectronics 117, 501–507; https://doi.org/10.1016/j.bios.2018.06.047 (2018).
  16. Preventing the coffee-ring effect and aggregate sedimentation by in situ gelation of monodisperse materials.
    Li, H., Buesen, D., Williams, R., Henig, J., Stapf, S., Mukherjee, K., Freier, E., Lubitz, W., Winkler, M., Happe, T. & Plumeré, N. Chemical Science 9, 7596–7605; https://doi.org/10.1039/C8SC03302A (2018).
  17. Dual properties of a hydrogen oxidation Ni-catalyst entrapped within a polymer promote self-defense against oxygen.
    Oughli, A. A., Ruff, A., Boralugodage, N. P., Rodríguez-Maciá, P., Plumeré, N., Lubitz, W., Shaw, W. J., Schuhmann, W. & Rüdiger, O. Nature Communications 9, 864; https://doi.org/10.1038/s41467-018-03011-7 (2018).
  18. Viologen-modified electrodes for protection of hydrogenases from high potential inactivation while performing H2 oxidation at low overpotential.
    Oughli, A. A., Vélez, M., Birrell, J. A., Schuhmann, W., Lubitz, W., Plumeré, N. & Rüdiger, O. Dalton Transactions 47, 10685–10691; https://doi.org/10.1039/C8DT00955D (2018).
  19. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode.
    Szczesny, J., Marković, N., Conzuelo, F., Zacarias, S., Pereira, I. A. C., Lubitz, W., Plumeré, N., Schuhmann, W. & Ruff, A. Nature Communications 9, 4715; https://doi.org/10.1038/s41467-018-07137-6 (2018).
  20. Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes.
    Zhao, F., Hardt, S., Hartmann, V., Zhang, H., Nowaczyk, M. M., Rögner, M., Plumeré, N., Schuhmann, W. & Conzuelo, F. Nature Communications 9, 1973; https://doi.org/10.1038/s41467-018-04433-z (2018).
  21. UV-Triggered Polymerization, Deposition, and Patterning of Plant Phenolic Compounds.
    Behboodi-Sadabad, F., Zhang, H., Trouillet, V., Welle, A., Plumeré, N. & Levkin, P. A. Advanced Functional Materials 27, 1700127; https://doi.org/10.1002/adfm.201700127 (2017).
  22. Bio-inspired strategy for controlled dopamine polymerization in basic solutions.
    Du, X., Li, L., Behboodi-Sadabad, F., Welle, A., Li, J., Heissler, S., Zhang, H., Plumeré, N. & Levkin, P. A. Polymer Chemistry 8, 2145–2151; https://doi.org/10.1039/C7PY00051K (2017).
  23. Protection and Reactivation of the [NiFeSe] Hydrogenase from Desulfovibrio vulgaris Hildenborough under Oxidative Conditions.
    Ruff, A., Szczesny, J., Zacarias, S., Pereira, I. A. C., Plumeré, N. & Schuhmann, W. ACS Energy Letters 2, 964–968; https://doi.org/10.1021/acsenergylett.7b00167 (2017).
  24. Bioelectrochemistry. From the recent past into new challenges.
    Schuhmann, W. & Plumeré, N. Current Opinion in Electrochemistry 5, 63–65; https://doi.org/10.1016/j.coelec.2017.11.008 (2017).
  25. High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.
    Zhang, H., Oellers, T., Feng, W., Abdulazim, T., Saw, E. N., Ludwig, A., Levkin, P. A. & Plumeré, N. Analytical Chemistry 89, 5832–5839; https://doi.org/10.1021/acs.analchem.7b00008 (2017).
  26. A novel versatile microbiosensor for local hydrogen detection by means of scanning photoelectrochemical microscopy.
    Zhao, F., Conzuelo, F., Hartmann, V., Li, H., Stapf, S., Nowaczyk, M. M., Rögner, M., Plumeré, N., Lubitz, W. & Schuhmann, W. Biosensors & Bioelectronics 94, 433–437; https://doi.org/10.1016/j.bios.2017.03.037 (2017).
  27. Interrogation of a PS1-Based Photocathode by Means of Scanning Photoelectrochemical Microscopy.
    Zhao, F., Plumeré, N., Nowaczyk, M. M., Ruff, A., Schuhmann, W. & Conzuelo, F. Small 13, 1604093; https://doi.org/10.1002/smll.201604093 (2017).
  28. Anodic Desorption Monitored by Voltammetric and Gravimetric Measurements for Fast Estimation of Surface Coverage of Complex Organic Molecules on Au Electrodes.
    Bandarenka, A. S., Williams, R. & Plumeré, N. Electroanalysis 28, 2382–2388; https://doi.org/10.1002/elan.201600243 (2016).
  29. Photosynthesis: Short circuit at the chlorophyll.
    Nowaczyk, M. M. & Plumeré, N. Nature Chemical Biology 12, 990–991; https://doi.org/10.1038/nchembio.2240 (2016).
  30. Biophotoelectrochemistry of Photosynthetic Proteins.
    Plumeré, N. & Nowaczyk, M. M. In Biophotoelectrochemistry: From Bioelectrochemistry to Biophotovoltaics, edited by L. J. Jeuken (Springer International Publishing, Cham, 2016), Vol. 158, pp. 111–136.
  31. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers.
    Sokol, K. P., Mersch, D., Hartmann, V., Zhang, J. Z., Nowaczyk, M. M., Rögner, M., Ruff, A., Schuhmann, W., Plumeré, N. & Reisner, E. Energy & Environmental science 9, 3698–3709; https://doi.org/10.1039/C6EE01363E (2016).
  32. A pH Responsive Redox Hydrogel for Electrochemical Detection of Redox Silent Biocatalytic Processes. Control of Hydrogel Solvation.
    Contin, A., Frasca, S., Vivekananthan, J., Leimkühler, S., Wollenberger, U., Plumeré, N. & Schuhmann, W. Electroanalysis 27, 938–944; https://doi.org/10.1002/elan.201400621 (2015).
  33. Controlling the charge of pH-responsive redox hydrogels by means of redox-silent biocatalytic processes. A biocatalytic off/on switch.
    Contin, A., Plumeré, N. & Schuhmann, W. Electrochemistry Communications 51, 50–53; https://doi.org/10.1016/j.elecom.2014.12.001 (2015).
  34. Mechanism of Protection of Catalysts Supported in Redox Hydrogel Films.
    Fourmond, V., Stapf, S., Li, H., Buesen, D., Birrell, J., Rüdiger, O., Lubitz, W., Schuhmann, W., Plumeré, N. & Léger, C. Journal of the American Chemical Society 137, 5494–5505; https://doi.org/10.1021/jacs.5b01194 (2015).
  35. 9 – Semi-artificial photosynthetic Z-scheme for hydrogen production from water.
    Kothe, T., Schuhmann, W., Rögner, M. & Plumeré, N. In Biohydrogen, edited by M. Rögner (De Gruyter, Berlin, München, 2015).
  36. A redox hydrogel protects the O2-sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage.
    Oughli, A. A., Conzuelo, F., Winkler, M., Happe, T., Lubitz, W., Schuhmann, W., Rüdiger, O. & Plumeré, N. Angewandte Chemie International Edition 54, 12329–12333; https://doi.org/10.1002/anie.201502776 (2015).
  37. Ein Redoxhydrogel schützt die O2 -empfindliche [FeFe]-Hydrogenase aus Chlamydomonas reinhardtii vor oxidativer Zerstörung.
    Oughli, A. A., Conzuelo, F., Winkler, M., Happe, T., Lubitz, W., Schuhmann, W., Rüdiger, O. & Plumeré, N. Angewandte Chemie 127, 12506–12510; https://doi.org/10.1002/ange.201502776 (2015).
  38. Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout.
    Pinyou, P., Conzuelo, F., Sliozberg, K., Vivekananthan, J., Contin, A., Pöller, S., Plumeré, N. & Schuhmann, W. Bioelectrochemistry 106, 22–27; https://doi.org/10.1016/j.bioelechem.2015.04.003 (2015).
  39. Thermoresponsive amperometric glucose biosensor.
    Pinyou, P., Ruff, A., Pöller, S., Barwe, S., Nebel, M., Alburquerque, N. G., Wischerhoff, E., Laschewsky, A., Schmaderer, S., Szeponik, J., Plumeré, N. & Schuhmann, W. Biointerphases 11, 11001; https://doi.org/10.1116/1.4938382 (2015).
  40. Simultaneous measurements of photocurrents and H2O2 evolution from solvent exposed photosystem 2 complexes.
    Vöpel, T., Ning Saw, E., Hartmann, V., Williams, R., Müller, F., Schuhmann, W., Plumeré, N., Nowaczyk, M., Ebbinghaus, S. & Rögner, M. Biointerphases 11, 19001; https://doi.org/10.1116/1.4938090 (2015).
  41. Light Induced H2 Evolution from a Biophotocathode Based on Photosystem 1–Pt Nanoparticles Complexes Integrated in Solvated Redox Polymers Films.
    Zhao, F., Conzuelo, F., Hartmann, V., Li, H., Nowaczyk, M. M., Plumeré, N., Rögner, M. & Schuhmann, W. The Journal of Physical Chemistry. B 119, 13726–13731; https://doi.org/10.1021/acs.jpcb.5b03511 (2015).
  42. Scanning droplet cell for chemoselective patterning through local electroactivation of protected quinone monolayers.
    Clausmeyer, J., Henig, J., Schuhmann, W. & Plumeré, N. ChemPhysChem 15, 151–156; https://doi.org/10.1002/cphc.201300937 (2014).
  43. Electrochemical patterning as a tool for fabricating biomolecule microarrays.
    Clausmeyer, J., Schuhmann, W. & Plumeré, N. TrAC Trends in Analytical Chemistry 58, 23–30; https://doi.org/10.1016/j.trac.2014.03.004 (2014).
  44. Redox hydrogels with adjusted redox potential for improved efficiency in Z-scheme inspired biophotovoltaic cells.
    Hartmann, V., Kothe, T., Pöller, S., El-Mohsnawy, E., Nowaczyk, M. M., Plumeré, N., Schuhmann, W. & Rögner, M. Physical Chemistry Chemical Physics 16, 11936–11941; https://doi.org/10.1039/C4CP00380B (2014).
  45. Photosynthesis at the forefront of a sustainable life.
    Janssen, P. J. D., Lambreva, M. D., Plumeré, N., Bartolucci, C., Antonacci, A., Buonasera, K., Frese, R. N., Scognamiglio, V. & Rea, G. Frontiers in Chemistry 2, 36; https://doi.org/10.3389/fchem.2014.00036 (2014).
  46. Engineered electron-transfer chain in photosystem 1 based photocathodes outperforms electron-transfer rates in natural photosynthesis.
    Kothe, T., Pöller, S., Zhao, F., Fortgang, P., Rögner, M., Schuhmann, W. & Plumeré, N. Chemistry – A European Journal 20, 11029–11034; https://doi.org/10.1002/chem.201402585 (2014).
  47. Surface-Attached Poly(glycidyl methacrylate) as a Versatile Platform for Creating Dual-Functional Polymer Brushes.
    Lillethorup, M., Shimizu, K., Plumeré, N., Pedersen, S. U. & Daasbjerg, K. Macromolecules 47, 5081–5088; https://doi.org/10.1021/ma500872b (2014).
  48. Elektrochemischer Nitratsensor.
    Plumeré, N. Nachrichten aus der Chemie 62, 777–779; https://doi.org/10.1002/nadc.201490261 (2014).
  49. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage.
    Plumeré, N., Rüdiger, O., Oughli, A. A., Williams, R., Vivekananthan, J., Pöller, S., Schuhmann, W. & Lubitz, W. Nature Chemistry 6, 822–827; https://doi.org/10.1038/nchem.2022 (2014).
  50. The Role of Hydrophobicity of Os-Complex-Modified Polymers for Photosystem 1 Based Photocathodes.
    Zhao, F., Sliozberg, K., Rögner, M., Plumeré, N. & Schuhmann, W. Journal of The Electrochemical Society 161, H3035-H3041; https://doi.org/10.1149/2.0081413jes (2014).
  51. Affinity binding via zinc(II) for controlled orientation and electrochemistry of histidine-tagged nitrate reductase in self-assembled monolayers.
    Campbell, W. H., Henig, J. & Plumeré, N. Bioelectrochemistry 93, 46–50; https://doi.org/10.1016/j.bioelechem.2012.07.002 (2013).
  52. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications.
    Kothe, T., Plumeré, N., Badura, A., Nowaczyk, M. M., Guschin, D. A., Rögner, M. & Schuhmann, W. Angewandte Chemie International Edition 52, 14233–14236; https://doi.org/10.1002/anie.201303671 (2013).
  53. Die Kombination einer auf Photosystem 1 basierenden Photokathode und einer auf Photosystem 2 basierenden Photoanode zu einem Z-Schema-Analogon für biophotovoltaische Anwendungen.
    Kothe, T., Plumeré, N., Badura, A., Nowaczyk, M. M., Guschin, D. A., Rögner, M. & Schuhmann, W. Angewandte Chemie 125, 14483–14486; https://doi.org/10.1002/ange.201303671 (2013).
  54. Interferences from oxygen reduction reactions in bioelectroanalytical measurements: the case study of nitrate and nitrite biosensors.
    Plumeré, N. Analytical and Bioanalytical Chemistry 405, 3731–3738; https://doi.org/10.1007/s00216-013-6827-z (2013).
  55. Amperometric sensing–bioelectroanalysis.
    Seeber, R., Schuhmann, W., Terzi, F., Zanardi, C., Plumere, N. & Gebala, M. Analytical and Bioanalytical Chemistry 405, 3423–3426; https://doi.org/10.1007/s00216-013-6813-5 (2013).
  56. Determination of Temperature Gradients with Micrometric Resolution by Local Open Circuit Potential Measurements at a Scanning Microelectrode.
    Sode, A., Nebel, M., Pinyou, P., Schmaderer, S., Szeponik, J., Plumeré, N. & Schuhmann, W. Electroanalysis 25, 2084–2091; https://doi.org/10.1002/elan.201300258 (2013).
  57. In depth analysis of complex interfacial processes: in situ electrochemical characterization of deposition of atomic layers of Cu, Pb and Te on Pd electrodes.
    Huang, M., Henry, J. B., Fortgang, P., Henig, J., Plumeré, N. & Bandarenka, A. S. RSC Advances 2, 10994; https://doi.org/10.1039/C2RA21558F (2012).
  58. Electrodeposition of Catechol on Glassy Carbon Electrode and Its Electrocatalytic Activity Toward NADH Oxidation.
    Maleki, A., Nematollahi, D., Clausmeyer, J., Henig, J., Plumeré, N. & Schuhmann, W. Electroanalysis 24, 1932–1936; https://doi.org/10.1002/elan.201200251 (2012).
  59. Single molecules: A protein in the spotlight.
    Plumeré, N. Nature Nanotechnology 7, 616–617; https://doi.org/10.1038/nnano.2012.175 (2012).
  60. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor.
    Plumeré, N., Henig, J. & Campbell, W. H. Analytical Chemistry 84, 2141–2146; https://doi.org/10.1021/ac2020883 (2012).
  61. Stöber silica particles as basis for redox modifications: particle shape, size, polydispersity, and porosity.
    Plumeré, N., Ruff, A., Speiser, B., Feldmann, V. & Mayer, H. A. Journal of Colloid and Interface Science 368, 208–219; https://doi.org/10.1016/j.jcis.2011.10.070 (2012).
  62. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments.
    Swoboda, M., Henig, J., Cheng, H.-M., Brugger, D., Haltrich, D., Plumeré, N. & Schlierf, M. ACS Nano 6, 6364–6369; https://doi.org/10.1021/nn301895c (2012).
  63. Redox-active silica nanoparticles. Part 4. Synthesis, size distribution, and electrochemical adsorption behavior of ferrocene- and (diamine)(diphosphine)-ruthenium(II)-modified Stöber silica colloidal particles.
    Novak, F., Plumeré, N., Schetter, B., Speiser, B., Straub, D., Mayer, H. A., Reginek, M., Albert, K., Fischer, G., Meyer, C., Egelhaaf, H.-J. & Børresen, B. Journal of Solid State Electrochemistry 14, 289–303; https://doi.org/10.1007/s10008-009-0811-8 (2010).
  64. Thermally induced radical hydrosilylation for synthesis of C18 HPLC phases from highly condensed SiH terminated silica surfaces.
    Plumeré, N., Speiser, B., Dietrich, B., Albert, K., Pesek, J. J. & Matyska, M. T. Langmuir 25, 13481–13487; https://doi.org/10.1021/la901986w (2009).
  65. High-temperature chlorination-reduction sequence for the preparation of silicon hydride modified silica surfaces.
    Plumeré, N., Speiser, B., Mayer, H. A., Joosten, D. & Wesemann, L. Chemistry – A European Journal 15, 936–946; https://doi.org/10.1002/chem.200801213 (2009).
  66. Redox-active silica nanoparticles.
    Plumeré, N. & Speiser, B. Electrochimica Acta 53, 1244–1251; https://doi.org/10.1016/j.electacta.2007.01.020 (2007).

Contact

Professorship for Electrobiotechnology

Uferstraße 53
94315 Straubing
ebt@cs.tum.de

 

Head

Prof. Dr. Nicolas Plumeré
Phone: +49 (0) 9421 187 400
E-Mail: nicolas.plumere@tum.de

 

Office

Nadine Ternes
Phone: +49 (0) 9421 187 409
E-Mail: nadine.ternes@tum.de